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A method is given for solving the problem of parametrization and determinat-
ion of the metric of the middle surface of a shell of complex configuration.
The method is based on introducing, into the space, a surface o, with simple
geometry, and using this as a reference surface on which the middle surface ¢
is mapped. The position of a point on ¢ is defined in terms of the Gaussian
coordinates a!, a? of the point on ¢, , and the distance H (a!, a?) betw-
een ¢ and o, measured along the normal to 0,, Expansion of the shell
displacement vector in terms of the basis vectors on ¢, the basis represent-
ing a mapping of the basis on  0,, and use of a Timoshenko-type theory,
yield a formulation of a nonlinear boundary value problem of computing shells
of complex configuration. A method is given of reducing the problem of in-
vestigating the open "non-classical” shells in terms of the coordinates of their
middle surfaces to a "conditionally classical" problems in terms of the coordi-~
nates of the reference surface, A theory of shells shallow relative to the ref-
erence surface is proposed, which generalizes the classical theory of shallow
shells the middle surface of which is shallow relative to a plane,

1, Mapping of the middle surface of the shell onto
the reference surface, We know that when a continuous 1:1 correspond-
ence is established between the points of two surfaces o, and ¢, then each of the
two corresponding points can be assigned the same values of the curvilinear coordinat-
es. Such a parametrization of the surface parameters is called general with respect
to the correspondence in question, The equations of the surfaces taking part in the
general parametrization have the form r° = r° (al, &), r = r (!, a?).

The coordinate surface in the theory of shells is normally made to coincide with
the middle surface by assuming that r° (a?, a®) = r (a?, a2), and this causes consid-
erable difficulties in solving the problems of parametrization and determination of
the metric of the middle surface of a shell of complex configuration, Let o denote
the middle surface of the undeformed shell, We introduce a surface o, specified by
its lines of curvature ot, a2, and call it from now on the reference surface, We shall
use the notation and auxilliary formulas of [1].

If 1° is the radius vector of a point M, = ¢, and m° is the unit vector normal
to o, at this point, then, choosing the form and position of the point ¢, in the space
in the appropriate manner, we can determine the position of a point M e ¢ from
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the vector equation
r (of, a?) = 1 (&}, @) -+ H (o), a*)m° (L. 1)

where H is the distance between o, and o. Clearly the mapping (1. 1) will be in
1:1 correspondence if a straight line drawn along the normal to o, from each point
of o, intersects ¢ not more than once. With such a method of parametrization of

the middle surface, the coordinate lines P! = ¢ will be the lines drawn by the tip of

the radius vector r when the point alon

M, moves along the coordinate lines al = g,.

Differentiating (1. 1) with respect to ! and taking into account the formulas
m,;° = A;°k;e;° , we find the coordinate vectors of the fundamental basis of ¢ and
the components of the metric tensor (k; are the curvatures of the coordinate lines
ot e gg)

v, = A;0;(e;" +y;m°), 8°=r"°/A° (1.2)

7
aip = ity = A°4,70:8; Qi + vivy) (1.3)
AP =1rl, Oi=1-+Hk, yi=H,/(4°0)

Let us write the unit vector m normal to ¢ in the form of an expansion
m = § (m° = §e;") (1.4)

where §, & and §, are unknown coefficients, Substituting (1.2) and (1.4) iato the
scalar products mm = 1, mr; = O,we find

Gi=ui, E=(1+y2+p)™ (1.5)
and substituting the formulas (1.2) and (1. 4) into the expressions for b, we obtain

by = —A0E (ALKCE + wd, 1 4° —y ) (1,2) (1.6)
b = —A 0,8 (y12d,°ky — Ya,1 + oy dye’ [ A°) = by, C2=1+y?

Here and henceforth the symbol (1, 2) indicates that the remaining relations are obtain-
ed by interchanging the indices 1 and 2 in the expressions given,

Thus the relations (1.3) and {1, 6) enable us to determine, in a sufficiently simple
manner, the metric of the middle surface of the shell o, provided that the metric
of the reference surface and the distance between o and ¢, are both known,

2, Relations of the theory of mean flexure of thin,
Timoshenko~type shells in terms of the curvilinear
coordinates of the reference surface, Instudying the stress-
strain states of thin shells by numerical methods, it is expedient to make use of the
relations of the theory of Timoshenko-type shells based on the straight line hypothesis.
According to this hypothesis the displacement vector of a point P on the shell situat-
ed, before the deformation, at a distance z from o, can be written in the form

0 =vtoy=urttomtzritym, —h/2<z<h/2 (2.1
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Here u; and v; are the covariant components of the displacement vector of the
middle surface 6 and of the rotation vector r? = atkr, are the mutual basis vectors
and h is the shell thickness. It can be shown that

all = (8C, | A°0,)2, a2 = (EC;/ A°0,)%, a? = —Byyy, [ A,°A4,°0,0,

The radius vectors of the point P before and after deformation are R = r - zm,
R* = R + vz, Differentiating these expressions with respect to a! and taking into
account (2, 1), we obtain the basis vectors (the notation of [2] is used here)

Ri= (8;f — zbiF)rix, Rg=m, R* =R+ v + zdiy (2.2)
Rg¥F=m-+y, &v=cpr®*+ om, 8;79=Qurf+ Qm
eir = Viuy — biw, 0 = Viw + uyb;¥
Qir = Vive — big¥s Qi = Viy + 1ibi¥
Let us quote some of the relations of the theory of mean flexure [1, 2] for the case
of small transverse displacements, We call the flexure of the shell mean, if its max-

imum value is of the same order as the thickness 4. It was shown in [2] that the
mean flexure has the following corresponding deformation components;

285 = eix + exi T 010, 2853 = ©; + (2.3)
i = Qi + Qgiy 285 = 2y + yivh, Qi = Viyy
where e;; and x;; denote the covariant components of the tangential and bending
deformation tensors and 2g¢;; are the transverse shears undergoing no change across

the thickness of the shell,
In the Timoshenko-type shear model the deformation components are

8" = & + 2niy, €4 = g (2.4)

The equations of equilibrium corresponding to the deformation cormponents (2, 3) can
be obtained from the variational Lagrange equation (¢% = 0, 84 denotes the elemen-
tary work of the extemal forces and moments [1])

h/2
8A = yj f (c** del, + 26136£i3) dsdz = (2.5)
0o —h /2

(1™ @ey + 080, + M*o0,, + N (80, + by, ds
Jo

84 = f f (X6v 4 Méy) ds + j(m‘*av + M) ds
Oy C

where we have put &8;% — zb;¥ =~ ;% and defined the forces and moments as follows:
YL L omje Rl
™ = f ofds, M¥ = o'fzdz, N'= 5‘ c%dz (2.6)
—h/2 —~h/2 —h/2
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The variational formula (2.5) can be transformed [1] to the form

y D — @°) v 4 (M — M°) 8y] ds — ” (L0u; -+ Lbw + H'oy,)ds =0 (2.7)
C Jo

and this yields the following equations of equilibrium and the static boundary conditi-
ons;

Li= VyTi — piNis 4 Xt =0, [3=V,NW - b Tk L X3=0 (2.8)
Hi= VM — N4 Mi=0, N®= Nif{ Tikgy

O =05, M= M* (2.9)

The above method of investigating shells of complex configuration represents a
novel approach to the problem of solving a wide class of open shells in whizh the
normal projection of the contour € = ¢ on o, coincides with the coordinate lines

at = 0, g; = g,. A typical example belonging to this class is a shell cut out of a
shell of revolution by the sections #; == 0, %; =, = /i, and shown in Fig. 1. The
shell is non-classical since its two contour lines do not coincide with the meridional
lines of the surface of revolution, It can be however reduced to the classical form by
choosing, in accordance with the above statements, a circular cylindrical surface of
radius R, with the axis laying in the plane , = hy and parallel to the axis of the
surface of revolution,
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Let us derive the boundary conditions for the class of shells in question, Rememb-
ering that on the coordinate lines B! = const & C which are a mapping of the coord-
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inate lines a! = 0, a;, the vectors r, are tangential and r! are normal to the con-
tour C, we write the tangential displacement vectors v and rotational displacem-
ent vectors ¥' in the form vt = wu;r, + upr?, ¥ = P05 + Vur'.  Let us write the
covariant components of these vectors in terms of u., un, v, and v ,constructing

the vector relations

UTy + unt! = uprt, pry + pprl = pai (2.10)
Scalarly multiplying (2. 10) by 1) and then by r,, we find

Up = Uglyy T Un, Uy = Uy, (2.11)

V1= Vihiz T Tny Vo = Vqlax (1, 2)

The contour integral given in (2,7) can be transformed, in the present case, with
(2. 11) taken into account, to

a2 a1 as

S[((D @) 6V + (M — M®) 8y] ds = ( Alodal + [ A de
° 0
= (®' Ve — O8,)0v + M1Va— 1A)6y—

[(T“am + T1%ay,) V“ — (DsMay, + B1%ay)4 alBuy +
(TRY 21— DMA,)0un+ (NB3V @ — O134,)6w +
[(1‘4111/a + Mmam)]/‘; — (M May, + Ms12a22)A2]6Y1: +
(M*Va — MMA,)09, (1, 2)

A; = VZ; ®; = Qb O Bm, M= M¥r, 4 M Bm)

Consequently, various variants of the static and geometrical boundary conditions on
the contour C can be assembled, for ot = 0, a;,from

(TRay, + T%ay)Va — (O Ma+ O 2ay)d, = 0, Su, = 0 (2.12)
T™MYa— ®N4, =0, bu, =0
NBYa — D B4, =0, dw=0

(MYay, + M¥%a,)Va — (M May, + MPay)d, =0, by, =0
MYVa— M8B4, =0, Sy, =0 (1,2)

3. Relations of the theory of thin shells shallow
relative tothereference surface, Wwe shall consider a particu-
lar case in which the conditions of shallowness of the middle surface of the shell with
respect to the reference surface yy; = (4;,°4,°0;0,)1H,;H,; < 1; i,k=1,2 can
be imposed on the variation in the quantity H (a!, «?). As a result of these condit-
ions, we can introduce a number of simplifications in what follows. First we have,
with the accuracy of 1+ y2 =1,

=U+ud)=1 P=U+ oyt e 8.1)

Moreover, the coordinate lines B! and o can be regarded as orthogonal assuming
that

€os ¥, = Y1y / (C1Cy) = 0, siny = 1/ (C,0%) ~ 1 (3.2
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where X is the angle between the vectors r, and r, .

It follows that the fundamental basis of the surface o can be assumed to coincide
with the mutual basis, Taking into account (1. 5), (3. 1) and (3. 2) we obtain from
(1.2) and (1. 4)

e =1/ d; = e + yim’, m=m® — ye° — yey’ (8.3)

and write the forrmulas for the curvatures ki  of the coordinate lines P! = ¢ with
help of the Codazzi conditions (k.4,°%),; = k3ds,y° (1, 2), in the form

k= —by L ey = k10— (AL + 1Ay [ ALAY (3.4)
A1A2/‘712 = by = 92?11‘41720 -+ 61y2A2,1° — Hy,y (1,2)

where by virtue of C€; =1 the coefficients 4; =~ 4;°0;.
Finally, taking into acccount (3.1) and (3. 2) and using the Codazzi conditions,
we obtain the approximate differentiation formulas ‘

Ageyy = —dyge — Aydghym,  Agey,, = Ay, — A14,kpm (3.5)
m,y = A, (kyey -+ ke, (1, 2)

which coincide formally with the corresponding formulas of [1].

Let us denote by u;, w and vi the physical components of the vectors v and
v = we; -+ wm, ¥ == y;e; + ym. Then, using the formulas (3, 3) and (3. 5)
we obtain, with the accaracy of 1 - y;y, = 1 4the physical components of the defor-
mation tensor

285 = ey + ey T w05, 283 = @3+ 7 (3. 8)
2y = Qi +

where in contrast to (2, 3)

ep = A tugy + ugdyyg (A3A0)7T + kyw, ey = Ay Tluy,y — (3.7
A, (A1) b kyow, o) = A;7hw,y — kyuy — kppuy

Q= A7+ 1l (4349)7h Qpa = A7y — Tedys (434y)™1 (1, 2)

The equations of equilibrium of the shell (2. 8) can also be reduced with the accur-
acy of 1 -+ y;yy = 1 to the form

L' = (4,Tyy), HA1 Ty s + T1adrse — Taedan + 434, (Vighs + X3) =0 (3.8)
L3 = (43N13)y + (A1Vps),s — 434 (Tighix — Xg) = 0
HY = (A Myy)yg + (A Myp) e + Mypdy,s — Mo ds,y + A3y (M) — Ny) (1=2())
where we have assumed that the expression Ty, = T4y, My, = My is approximately
true and introduced the notation Nig = N; + Tywy. Here Ty, My, Xj, M, N;
denote the physical components of the corresponding tensors and vectors.
The boundary conditions (2. 12) at the edges p = const, assume, by virtue of the
relation a;, =~ 0 , a very simple form
Tip— Opt=0, dup=20 (3.9)
N,'s — (Ds.;_a = 0, 6w =10



Relations of the theory of thinTimoshenko-type shells 815

Mjy= My =0, dy,=0, i,k=1,2
(@:° = Qy® e + Pig®m, M® = Mylex + M;3°m)

Let us call the relations (3. 6) —(3.9) the relations of the theory of mean flexure for
the Timoshenko-type shells shallow relative to the reference surface, The limits of
applicability of these relations are determined by the limiting values of the angles
between the coordinate vectors r; and r;° and these, in turn, can be expressed in
terms of the coefficients y; and y,. Taking the admissible error in computing the
basic factors determining the stress-strain state of the shell as & = 0.05, we find
that the limiting values of y: are equal to ~0.225 and this is confirmed by the
numerical example which was solved in [3].

We note that the equations (3. 8) can be replaced by the approximate expressions

(A2Ty3)01 + (A1T10)a + T1pdyss — Tapdy, + 4:4,X, =0 (1,2)
L3 =, Hi=0, i=1,2

when the shearing forces are neglected in the first two equations, The formulas for
the rotations ®; can also be replaced by @; = 4;7w,; for the shells the middie
surface of which is shallow with respect to a plane, or shallow with respect to any
reference surface in the sense explained above and can be subdivided into a large
number of parts shwllow in the classical sense,
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